
I

Empirical Evaluation of Local Search Methods
for Adapting Planning Policies in a Stochastic Environment

Abstract
Optimization of expected values in a
stochastic domain is common in real
world applications. However, it is often
difficult to solve such optimization ,

problems without significant knowledge
about the surface defined by the
stochastic function. In this paper we
examine t t x use of local search
techniques to solve stochastic
optimization. In particular, we analyze
assumptions of smoothness upon which
these approaches often rely. We
examine these assumptions in the context
of optimizing search heuristics for a
plannerhcheduler on two problem
domains. We compare three search
algorithms to improve the heuristic sets
and show :hat the two chosen local
search algorithms perform well. We
present empirical data that suggests this
is due to smoothness properties of the
search space for the search algorithms.

1. Introduction
In many optimization applications, the optimization
problem is made more difficult because the cost of
determining the utility of a solution is expensive (e.g., high
computational cost, limited data). This problem is
exacerbated in stochastic domains where numerous
samples are often required to accurately estimate the
expected value (which is usually the optimization target)
based on a probabilistic decision criterion. In many such
applications, high dimensionality (e.g., large search space)
and complex optimization spaces (e.g., non-convex)
combine to make the problem difficult.

For many large-scale problems, local search and iterative
improvement algorithms have been effective in finding
good solutions. In particular, many gradient following
approaches have been successfully applied to difficult real-
world optimization problems LO]. However, these

approaches rely on properties of the search space: that the
surface has some notion of smoothness to enable the step
functioll to search for a local maximum; and that a local
maximum is likely to produce an adequate value.
Furthermore, since the particular optimization approach
often defines the search operators, it also defines the locale
of the strategy search space. Consequently, some
optimization approach would result in a search space with
smoothness properties while other generation approaches
would not.

We examine this general hypothesis applied to learning
heuristics to guide search for a plannerischeduler that
solves problems from a tixed but unknown problem
distribution. We study the effectiveness of local search for
optimizing planner strategies, where a strategy encodes the
decision policy for the planner at each choice point in the
search. In particular, we examine several issues of general
interest.

I . We show that two different local search stochastic
optimization methods find strategies that significantly
outperform both the human expert derived strategy
and a non-local search strategy.

2. We show that the smoothness property holds for both
local search algorithms (despite their searching two
quite different spaces).

3 . Surprisingly, examining the learning trials showed that
the learning runs had to modify the initial strategies
considerably before showing significant improvement.
This either meant that the learning algorithms were
making poor initial steps and better later ones, or that
the learned strategies lay within a valley. We present
empirical results that show that the latter hypothesis is
true.

Because our approach is modular to allow arbitrary
candidate generation algorithms, we are able to examine
the problem for different generation strategies. In
particular, we examine a local beam-search candidate
generation approach and an evolutionary computation
approac11.

'The remainder o f this paper is organized as follows. First,
we describe the general approach to stochastic

L

optimimtion. Seconcl. describe Ilo\+ thc pl;tnning
application is x 1 instance o f stochastic optimization. As
part of this, we describe the specifics oi' the control
strategy encoding. Third. ~ v c describe the mpiricnl
results. focusing on the h) potheses outlined ubove.
Finally, we describe related and future work i n this area.

2. Stochastic Optimization
We define a stochastic optimization problem as
optimization of the expected value of a distribution. With
a deterministic planner/scheduler and a random set of
problems, there is sampling error in the estimation of
expected utilities for a set of control strategies, hence the
problem is stochastic. A non-deterministic
planner/scheduler and a static set of problems will also
produce utility distributions with error. hence this problem
is also stochastic. In our framework, we have a non-
deterministic planner/scheduler and a random set of
problems, so there is error in estimating each strategy
utility distribution, so the problem is stochastic. We define
a stochastic domain by utility estimation error.

We now describe our general iterative framework for
optimization of expected value in stochastic domains.
First, hypotheses are generated by a local search, then
these hypotheses are evaluated by testing them in the
application domain and scoring the result (see Figure I) .
This testing occurs under the direction of a statistical
evaluation component (described below). When the best
one or several hypotheses are known with the desired
confidence, the process is repeated (e.g., new hypotheses
are generated). This entire cycle is repeated until some
termination condition is met (e.g., number of cycles,
quiescence).

To evaluate the set of candidate hypothesis steps, we use
statistical methods that minimize resources used to satisfy
a decision criteria [I] ' . While the algorithm can use an
arbitrary decision criterion, in this paper we focus on the
use of the Probably Approximately Correct (PAC)
requirement, to determine when the utility of one
hypothesis is superior to another based on pair-wise
comparisons. With the PAC decision requirement, an
algorithm must make decisions with a given confidence
(expressed as the probability that its selection is correct is
greater than 6) to select the appropriate hypothesis
(expressed that its expected utility must be within E of the
true best hypothesis) as expressed in Equation (I) .
Because any specific decision either satisfies or does not
satisfy the requirement that the selected hypothesis is

' In this paper we focus on the candidate hypothesis
generation strategies and the outer loop. The statistical
evaluation phase of the learning process is described in
further detail in [1,2]

i
I

b l

Figure I Optimization cycle - given a set of
hypotheses, ranks these hypotheses, and generates a
next generation based on the rank of the previous
generation and a generation approach.

within t: of the true best hypothesis, the PAC requiremen
specifies that over a large number of decisions that the
accuracy rate must meet 6. For a pair of distributions, it is
relatively straightforward to calculate the probability that
one has a higher expected utility than the other. However,
selection of a single hypothesis from a set of n hypotheses
requires summation of a number of pair-wise comparisons.
To minimize resource usage, the algorithm allocates error
to each pair-wise comparison based on the estimated cost
of samples for those hypotheses, and allocates a greater

2 I'rl 1 1 , < 11 ~ , , - c 1 t i , > [I \<., + c1 5 (5
(1) , ~ I

(2) , = I

error to costly comparisons. Thus, the overall error
criterion is met using the fewest resources possible by
minimizing Equation (2) after each sample where c is the
cost of the best hypothesis and the cost of the i'"
hypothesis, and tl is the number of samples allocated to the
comparison. The sufficient number of samples (n) can be
generated, given a normal distribution of sample utility, by
estimating the difference in expected utility and variance of
each hypothesis. In general, we cannot solve this problem
optimally since the estimates for parameters required to
compute optimal solutions will include sampling error.
For more information regarding these techniques, see [1 1 .

3. Learning Planner Heuristics as Stochastic
Optimization
We investigate stochastic optimization in the context of
learning control strategies for the ASPEN planner [3].
ASPEN uses heuristics to facilitate the iterative search for
a feasible and high utility plan. During each search step, a
planner confronts a series of decisions such as which
schedule conflict to repair or the action to take to repair it.
The planner resolves these choices by applying the
heuristics. bilsed on wcights for each choice point heuristic,

during iterative repair [1-3 I . I'hus the weights tlelinc the
control strategy o f the planner and hence the cupccteti
utility of the resulting plans.

Specifically, i n our setup, a strategy hypothesis is a vector
with a weight for each heuristic function and a weight o f 0
for a heuristic no! in use. The utility o f a hypothesis can be
determined by running the planner using the control
strategy hypothesis on a certain problem instance and
scoring the resulting plan. A problem generator for each
domain provides a stochastic set of problem instances t o
enhance the robustness of the expected solution for the
entire planning domain.

In our ASPEN setup, there are twelve choice points i n the
repair search space. Higher level choice points include
choosing the conflict to resolve and choosing the resolution
method, such as preferring open constraints before violated
constraints, or preferring to add activities over moving
them. Once a resolution method is selected, furtherchoice
points influence applications of the choice point (e.%.,
where to place a newly created activity and how to
instantiate its parameters). For each choice point, there are
many heuristics that might be used. The hypothesis vector
is the list of relative weight that is given to each heuristic
for that choice point. Since the planner is stochastic, the
choice of heuristics that are used at each step is
randomized, so multiple runs even for the same problem
instance may yield a range of solutions (plans) and hence a
range of utilities.

The search space for each of our domains, given the
encoding of the hypotheses, is large. The sum of each
choice point's hmristic values must sum to 100 (so each
weight can have 101 possible values), and utilities may
depend on the correct heuristic values for multiple choice
points. So the number of elements in the search space is:

where hi is the number of heuristics for choice point i. The
two domains we are using have approximately 2.3*10'"
different possible hypotheses. Because there are a limited
number of repair iterations (in these experiments, 200 at
most), there are a limited number of stochastic decisions to
be made, so it is unclear how much of an impact small
differences in the weights will make. If we define "small
difference" as I O percentage points for each hypothesis,
the space already drops to 4.7* 10'' (substituting I I for I O 1
in the above equation) although from our experimentation
it seems that for some choice points this definition is still
an overestimate.

l) o l ~ 1 ~ l i t l . ~

I ' l lc r c p i r heur15tics \vcre developed for indivitiual domain
w r c h rquircnlcnts l i o l n /\SI'EN applications [.? J . There
arc ;11so dt)lll;lin-sl~ecitic heuristics. which reference
prticular tkaturcs o f a domain i n order t o affect the search.
For each domain. the human expert strategy hypotheses
were derived inciependently from (and prior to) our study
by m a n u a l esperimentation and domain analysis.

We csamine three different spacecraft domains, which
satisfy the normality assumption of the evaluation method.
l h e tirst domain. Earth Orbiter- I (EO- I), is an earth
imaging satellite. The domain consists of managing
spacecraft operations constraints (power, thermal. pointing,
buffers. telecommLlnications, etc.) and science goals
(imaging targets and calibrating instruments with
observation parameters). Each problem instance is used to
create ;I two-day operations plan: a typical weather and
instrument pattern. observation goals (between 3 and 16),
and a number of satellite passes (between 50 and 175).
EO-I plans prefer more calibrations and observations,
earlier start times for the observations, fewer solar array
and aperture manipulations, lower maximum value over
the entire schedule horizon for the solar array usage, and
higher levels of propellant. The Comet Lander domain
models landed operations of a spacecraft designed to land
on a comet and return a sample to earth. Resources include
power, battery. communications, RAM, communications
relay in-view, drill, and ovens. Science includes mining
and analyzing a sample from the comet, and imaging. The
problem generator includes between 1 and 1 1 mining
activities and between I and 24 imaging activities at
random start times. The scoring functions for the Comet
Lander domain includes preferences for more imaging
activities, more mining activities, more battery charge over
the entire horizon, fewer drill movements, and fewer
uplink activities.

Setrrch A4ethod.v
The two !oca1 search types used were a local beam search
method and an evolutionary computation method. The
local beam search [9] detines a vector's neighborhood as
changing the subset of the vector associated with a choice
point by less than a certain step size. As opposed to
propagating only highest-ranking vector, the search
propagates a bean1 h of vectors, where h is greater or equal
to I . Samples for each individual candidate hypothesis are
generated and scored using the planner, and ranking is
done by pair-wise comparisons of these sample utilities for
each candidate hypothesis i n a generation. For each
generation, the beam search takes the top ranking h
hypotheses, creates h/,y candidate neighbor hypotheses for
each of them. and ranks the g candidate hypotheses to
create the subsecpcnt generation.

'The evolutionary algorithm 151 uses three general

operators (crossover. mutation, and reproduction) t o
generate the next set of hypotheses. I'arents are cllosen
based on their relative ranking. where the higher-scoring
hypotheses are more likely to be parents. The crossover
operator was not aware of subsets of the hypothesis vector
related to each choice point, so it could choose to split
within one of those subsets. For all operators, the results
are normalized to 100% before evaluation. Samples for
each individual candidate hypothesis are generated and
scored using the planner, and ranking is done by pair-wise
comparisons of these sample utilities for each candidate
hypothesis in a generation. For each hypothesis i n a
generation, the algorithm either reproduces one parent or
crosses two parents based on their ranking i n the previous
generation, and mutates the resulting candidate hypothesis.

Random sampling is another (non-local) method of search.
Vectors are generated at random and deep sampling is
performed on these vectors for a planning domain. The
results show a distribution of random hypothesis points and
expected utility for these random points in the strategy
space.

Although the locoi search algorithms are greedy given a
correct ranking, due to sampling error the ranking
algorithm can produce only an approximation of the
correct ranking. Furthermore, as the overall utility of the
candidate hypotheses continues to improve, ranking is
more difficult because the hypotheses have higher
variances relative to the differences in the mean (this is a
phenomenon well understood related to the Least
Favorable Configuration (LFC) in statistical ranking).
Consequently, the highest overall expected utility
hypothesis might ;lot occur in the final iteration, and the
optimization algorithm does not know the true utilities of
the strategies sampled, since it only has estimates. To
address this problem, each of our algorithms (beam-search
and evolutionary) select the highest estimated utility
strategy from all seen during that run (e.g., potentially not
the last strategy). When we report that strategy's utility,
we report a true utility based on a deep sample of many
more samples. Since each run takes several CPU days, we
are continuing to perform more optimization runs to
provide more detailed results.

4. Empirical Results
One simple question is whether the local optimization
techniques improve on the human expert strategies. I n
both the EO-I domain and the Comet Lander domain, we
compare expected utilities of the handcrafted expert
strategy and the best and average strategies found by
random sampling (Table I) . For local beam search and
local genetic search we report on the top strategy in the
final set of strategies (recall that the beam has several

Histogram of Random Samples
For EO-I Domain

0 1 5 0 2 0 2 5 0 3 0 3 5 0 4 0.45

Expected Utility Bin
. .

. . ~~

Histogram of Random
Samples For Comet Lander

0.4 0.43 0.46 0.49 0.52 0.55 0.59

Expected Utility Bin
~ ~~ ~~ ..

Table 2: Histogram Summaries

The results sho\v that the local search optimization was
able t o find striltcgies that significantly improved on the
expert strategies. We plot histograms (Table 2) for
randomly selected strategies i n the Comet Lander and EO-
I domains (where the arrows on the histograms indicate
key values: espcrt and learned strategies). These show that
the local search optimization techniques found very good
strategies overall i n thc space. among the best possible
strategies.
The traces o f the t w o local search techniques operating on
each o f the domains re shown below (e.g., deep sample

utility versus iteration). The shape 0 1 ' these graphs
(showing little early improvement) Icd us to believe that
the expert strategies are located i n an area of' local
minima, or B valley. of the search space. I n order to test
this con-jecture. we generated random walks in the
strategy spaces. Ihe size of the domain gives us a high
probability that a random walk will not cycle. The results
show that areas around the starting point perform poorly.
and random, undirected steps starting at the expert
hypotheses produce little improvement. This data (Figure
2 , Figure 4) confirms that the expert strategies lay i n a
valley but that sufficient gradient information existed to
allow the learning to escape the valley. One potential
explanation could be that the variance of the problems
from a single domain requires a large amount of
flexibility in the planner heuristics (e.g. stochasticity),
whereas the expert designed the set of heuristics such that
it would choose a single non-random strategy for each
choice point every time (because it is easier to understand
such a strategy).

. .

Table I : Summary Utility Results

How did the local search techniques find their way out of
the valley? Local search algorithms are effective on these
domains if the se'lrch spaces are smooth with respect to
the candidate hypothesis generation functions.
Smoothness in a discrete domain can be determined by
measuriug the difference in expected utility between
adjacent points with respect to a search step definition. If
this difference is small compared to the difference in
expected utility between two randomly selected points in
the search space, this shows the relative smoothness of the
two domains for the search algorithms. For random
search, adjacent points are any two vectors in the strategy
space. The mean difference in expected utility is
measured between two adjacent points, where the initial
point is a randomly generated hypothesis, and the
adjacent point is one step (as defined by the candidate
hypothesis generation function) from that point.
Table 2 shows the adjacency information for the three
different methods, which can be considered a
measurement of their smoothness. The mean difference
between adjacent points shows that two adjacent points
from a random sample have four to five times larger
difference in utility from ad-jacent points from the search
steps. I f the difference in utility is much closer for
adjacent points than for random points, a stcp using
search method with this property is likely to remain close

Table 2 Mcittl ;~nd standard deviations for adjacent
points for the three different search methods.

Although sn1oothness helps the local search technique step
around the search space effectively. using gradient
methods is another gamble. We can guarantee by the
smoothness analysis that a step will most likely be within
some E of the previous point, but that does not guarantee
that improvement using the gradient of that step will allow
us to predict the improvement for the next step along that
gradient. The data suggests that wing gradient methods is
effective i n finding a path out of the valley. so we believe
that some of this gradient information must be preserved in
these domains (Figure 3 and Figure 5).

.

Figure 2 Two random walks for the EO-I domain. The
first column is beam search, the second is genetic
algorithms.

Figure 3 Two searches for the EO-I domain. The first
column is heam search, the second is genetic
algorithms.

1 3 7 1 I i 1 2 2 2 1 2 3 4 5 h 7 X O l l

Figure 4 Two random walks for the Comet Lander
domain. The first column is beam search, the second is
genetic algorithms.

Figure 5 Two searches for the Comet Lander domain.
The first column is beam search, the second is genetic
algorithms.

5. Related Work, Future Work, and
Conclusions
There is significant related work on efficient search
techniques. The 4 2 algorithm optimizes the expected
output of a noisy continuous function, but does not have
guarantees on the result [14]. Response Surface Methods
[O] have been capplied to optimization problems in
continuous domains, but require modification for discrete
domains (as in our planning heuristics domain).
Evaluating control strategies is a growing area of interest.
Horvitz [6] described a method for evaluating algorithms
based on a cost versus quality tradeoff. Russell,
Subramanian, and Parr[101 used dynamic programming to
rationally select among a set of control strategies by
estimating utility, including cost. MULTI-TAC [8]
considers all k-wise combinations of heuristics for solving
a CSP in its evaluation, which also avoids problems with
local maxima, but at a large expense to the search.

Previous articles describing work in adaptive solving
described general methods, which have been developed
for transforming a standard problem solver into an
adaptive one. Gratch & Chien [5a] illustrated the
application of adaptive problem solving to real world
scheduling problems and showed how adaptive problem
solving can be cast as a resource allocation problem.
Zhang and Dietterich used reinforcement learning to learn
applicability condition for scheduling operators, using a
sliding time window of applicability for those operators
[121.

O u r optimizn~ion ;pproach is equivalent t o learning a nai’ve
hyesinI1 rnodel using an expectation klaximization
;lppro;lch [15.161. One difference is that our model
attcmpts to minimize resource usage by updating the model
alier each sample. as opposed to sampling in bulk, simply
hecause ol‘the high sample cost and the low cost to update
the model.
Future work includes determining how to adjust search
rates, learning composite strategies which involve logical
decisions about the relative usage of heuristics as opposed
to statistical methods, and a portfolio approach, which
combines heuristics and chooses which set to use based on
domain features judged statically or at run time.
Additional work has been proposed for hypothesis
evaluation based on a different set of stopping criteria,
which can be resource bounded (specifically considering
time as the resource), as in previous works on a similar
topic 141.

In this paper we have focused ‘on selecting the planner
strategy with the highest expected utility. However other
aspects of the strategy might be relevant. For example,
consistent (e.g., predictable) performance might be desired.
In this case probabilistic decision criteria incorporating
undesirability of a high utility variance strategy would
need to be used. In particular, the PAC requirement does
not incorporate any preference or disliking for high
variance strategies.

This paper has presented an approach to optimization of
expected values in a stochastic domain is common in real
world applications. Specifically, we presented an
approach based on local search of the optimization space.
We presented empirical results from an application to
learning planner heuristics in which learned strategies
significantly outperformed human expert derived
strategies. And we also presented empirical evidence that
these local search techniques performed well because
smoothness properties held in these applications.

6. Bibliography
[O] Box, G.E.P., Draper, N. R. 1987. Empirical Model-
Building and Response Surjaces. Wiley.
[I] Chien, S., Gratch. J., Burl, M. 1995. “On the Efficient
Allocation of Resources for Hypothesis Evaluation: A
Statistical Approach.” In Proceedings of the IEEE
Trunsuctions on Puttcrn .-lnuly.si.s und Machine Intelligence

[?I Chien, S., Stechert, A,, Mutz, D. 1999. “Efficient
Heuristic Hypothesis Ranking. “ Journal of‘ Artlficial
lntelligcncc Resetrrch Vol 10: 375-397.
[3] Chicn. S.. Rabideau, G., Knight, R., Sherwood, R.,
Engelhardt. B., Mutz, D.. Estlin, T., Smith, B., Fisher, F.,
Barrett. T . , Stebbins. G., Tran, D. 2000. “ASPEN -
Automating Space Mission Operations using Automated
Planning anti Scllcduling.” Sp~1ce0p.s 2000, Toulouse,

I7(7), p. 652-665.

“

France.
[4] Fink, E. 1998. “How to Solve it Automatically:
Selection among Problem-Solving Methods.” I n
Proceedings of the F i ,h International ConCAI Piunnincq
Systems. 128- 136.
[5] Goldberg, D. 1989. Genetic Algorithms: In Setrrch.
Optimization m1d Machine Learning. Reading,
Massachusetts: Addison-Wesley.
[sa] J. M. Gratch and S. A. Chien, “Adaptive Problem-
solving for Large Scale Scheduling Problems: A Case
Study,” Journal of Artificial Intelligence Research Vol. 4

[6] Horvitz, E. 1988. “Reasoning under Varying and
Uncertain Resource Constraints.” In Proceedings of the
Seventh National Conference on Artrficial Intelligence,

[7] Lin, S., and Kernighan, B. 1973. “An Effective
Heuristic for the Traveling Salesman Problem,”
Operations Research Vol. 21.
[8] Minton, S. 1996. “Automatically Configuring
Constraint Satisfaction Programs: A Case Study.” In

(1996), pp. 365-396.

1 1 1 - 1 16.

(‘ottstruit~ts I : I (7-43).
[9 1 I<ussell. S.. Norvig, 1’. 1 0 0 5 . :lrr//iciu/ /tlfc//icqc~ncc: ,,I
,A/oclcrn :1plmwLh. Upper Silddlt. Kiver. NJ: I’rentice Hall.
[I O] Russcll, S., Subramanian. D., Parr, K . 1993. “Provably
Roundcd Optimal Agents.” I t1 Procwxlings 01‘ the
Thir[ccnth InternLrtionul .Join[C‘onjerence on Artificial
Intelli~qencc.
[17) Zhang, W., Deitterich, T.G., (1996). “High-
Performance Job-Shop Scheduling With a Time-Delay
TD(h) Network Proc. N I P S 8, 1024-1030.
[131 Zweben, M., Daun, B., Davis, E., and Deale, M. 1994.
“Scheduling & Rescheduling with Iterative Repair.” In
Intelligent Scheduling. Morgan Kaufmann. 24 1-256.
[141 Moore, A., Schneider, T., Boyan, J . , Lee, M. S. 1998.
“Q2: Memory-based Active Learning for Optimizing
Noisy Continuous Functions. “ Proc. ICML 1998.
[1 51 Heckerman, David. 1996. A Tutorial on Learning with
Bayesian Networks. MSR-TR-95-06, Microsoft
Corporation.
[161 Bishop, C. 1995. Neural Networks for Pattern
Recognition. Clarendon Press, Oxford.

c

